Minor in Data Science

The Minor in Data Science is designed to provide students with a strong background in data science using a broad range of computational techniques, practice in statistical thinking, as well as in-depth exposure to topics in data science.

Students who plan to complete the requirements of the minor should consult the undergraduate advisor in CMSE (cmseug@msu.edu)

Minor requirements

Complete a minimum of 23 credits from the following:

  1. Requirements (19 credits):
    • STT 180 Introduction to Data Science (4 credits)
    • CMSE 201 Introduction to Computational Modeling and Data Analysis (4 credits)
    • CMSE 202 Computational Modeling Tools and Techniques (4 credits)
    • CMSE 381 Fundamentals of Data Science Methods (4 credits)
    • MTH 314 Matrix Algebra with Computational Applications (3 credits)
  2. One of the following groups (4 or 6 credits):
    • STT 380 Probability and Statistics for Data Science (4 credits)
    • STT 441 Probability and Statistics I: Probability AND STT 442 Probability and Statistics II: Statistics (6 total credits)

 

Grade and GPA requirements

As per the university GPA and minimum grade requirements:

  1.  You must achieve a minimum recorded GPA of 2.0 in all courses contributing to the CMSE Minor in order to receive the minor.
  2. You must achieve a minimum grade of 1.0 for all courses contributing to the CMSE minor in order to receive the minor.