Andrew Christlieb
Department Chair, Department of Computational Mathematics, Science and Engineering;
MSU Foundation Professor, Department of Mathematics
Room 1501B, Engineering Building
428 S. Shaw Ln.
(517) 8848947
christli@msu.edu
 About Me

B.S., 19911996, Mathematics, University of Michigan  Dearborn
B.S., 19911996, Engineering Mathematics, University of Michigan  Dearborn
B.S., 19911996, Electrical and Computer Engineering, University of Michigan  Dearborn
M.S., 19961998, Applied Mathematics, University of Wisconsin  Madison
Ph.D., 19982001, Mathematics, University of Wisconsin  MadisonAndrew Christlieb received his Ph.D. from the University of WisconsinMadison in 2001. Upon completing his Ph.D., he took a postdoc in the Aerospace Department at the University of Michigan with Iain Boyd, working on the simulation of micro air foils. He then transitioned to a postdoc in the Mathematics Department at the University of Michigan, where he worked with Robert Krasny on the development of meshfree methods for plasma simulations. Since 2004, he has worked very closely with the RDHE group at the Air Force research labs on the development of new methods for particle simulations of plasmas. In 2006, Christlieb joined the mathematics department at Michigan State University. In 2006, he was awarded a summer faculty fellow from the Air Force to work with AFRL Edwards on modeling of electric pupation. In 2007, he received the Air Force Young Investigator Award for his work on the development of novel methods for simulating plasmas. From 20082012, Christlieb was an IPA for the directed energy group at Kirtland Air Force Base. In 2010, he was promoted to associate professor and in 2014 he was promoted to professor. In 2015, he was named an MSU Foundation Professor.
Christlieb has an active research group, focusing on multiscale modeling, high order numerical methods and sublinear lossy compression algorithms. He is currently advising three postdocs and 10 students. His former Ph.D. students have gone on to work at national labs, industry and in academia. He has been involved in the development of a host of high order Eulerian, Lagrangian and semiLagrangian conservative methods for the kinetic simulation of plasmas, as well as the development of high order finite difference constrained transport methods for the simulation of magnetohydrodynamics targeted at AMR codes and new implicit Maxwell solvers targeting scale separation in plasmas. Christlieb's group is currently funded by AFOSR Computational Mathematics, AFOSR Physics and Electronics, AFRL RDHE, NSF Division of Mathematics and ORNL LDRD on scalable computing.
 Research Interests

• Fast convolution methods
• Multiscale modeling
• High order numerical methods
• Weighted essentially nonoscillatory methods
• Defect correction methods
• Kinetic theory
• Plasmas science
• Energy materials and phase filed models
 The Christlieb Group

Scientific Leader: Dr. Andrew Christlieb
There are three categories of applications our group considers. The first is related to modeling complex multi physics problems in plasma science. The second area we work on is the development of methods that are aimed at solving interface problems in polymer membranes; think fuel cells, solar cells and batteries. The third area we work on is the development of ultra fast methods (sublinear methods) for identification of sparse signals.
 Christlieb Group

We are working on developing a new class of implicit methods that avoids matrix inversion. The method is based on expanding operators with a method we developed based on successive convolution and fast kernel tricks. The base scheme is as fast as an explicit operator, but Astable. We are working on expanding this methods to a range of Partial Differential Equations. Successful applicants working with Professor Christlieb will have a strong background in numerical analysis and scientific computing. http://www.thechristliebgroup.org
 Publications

[1]A.J. Christlieb, W.N.G. Hitchon and E. Keiter, “A Computational Investigation of the Effects of Varying Discharge Geometry for Inductively Coupled Plasmas”, IEEE Transactions on Plasma Science, 28 (6): 22142231 DEC 2000[2]A.J. Christlieb and W.N.G. Hitchon, “ThreeDimensional Solutions of the Boltzmann Equation: Heat Transport at Long Mean Free Paths”, Physical Review E, 65 (5): Art. No. 056708 Part 2 MAY 2002
...
 Teaching

No courses for Fall 2017 or Spring 2018.
Click "Teaching" link to see past courses.